(\) NnEOHAPSIS

NEOHAPSIS LABS PRESENT

A DONKEYS WITH HATS
PRODUCTION

STARRING

GREG OSE
CRI1S NECKAR

(\) NnEOHAPSIS

FORENSIC FAIL
TN

WIALWARE KOMBAT

(\) NnEOHAPSIS

HOW MALWARE IS DETECTED

* The obvious
* Files that shouldn’t exist
* Processes that shouldn’t be running
* Changes to user accounts
* The stupid (crappy code)
* Oopses
* Panics
* BSODs
* Don’t touch the kernel unless you know what you are doing...
* Know what you’re patching
* Network sniffing or remote port scanning
* AV and rootkit detection methods

ROOTKIT DETECTION METHODS

* Signature based (typical AV)
* Behavioral analysis
* Ask for the same information in multiple ways and check for
different responses
* Heuristics based detection
* spawn shell, redirect 10 to socket, connect socket outbound
* CreateRemoteThread(), WriteProcessMemory()
* Typically high false positive rate
* Integrity monitoring
e Critical file integrity monitors (tripwire, etc)
» Code integrity checks (syscall table, IDT, any other static (per kernel)
values)

L T NWILDDETECTION ©
CODE INTEGRITY CHECKS

« Similarly we can check interrupt descriptor table (IDT) entries against
know interrupt handlers.

* Any other static function pointers can be checked in this way
(although checking all of them could be painful).

m

SYSCALL CASE STUDY

file->f op->readdir()

struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff t *);
ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff t);
int (*) (struct file *, void *, filldir_t);

NEW TARGET?

* If we modify ext3_file_operations->readdir to an evil hook, we gain
control of sys_getdents() for files residing on an ext3 filesystem

* This pointer is dynamic and will likely point to a variable address in a
module providing the filesystem driver

* This becomes non-trivial to check (tons of dynamic functions pointers
with variable locations)

static int (*old_readdir)(struct file *, void *, filldir_t);

static int evil_readdir(struct file * filp, void * dirent, filldir_t filldir) {
r = old_readdir(filp, dirent, filldir);
// Modify returned dirent buffer
return r;

}
int module_init(void) {
fs_dirops = (struct file_operations *)ADDRESS_OF_ORIG_FS_READDIR;

old_readdir = fs_dirops->readdir;
fs_dirops->readdir = evil_readdir;

TAKING IT FURTHER

 Aside from file hiding we can implement similar hooks of dynamic
file operations to accomplish other things

* Process hiding

* Hiding network connections or listening sockets

* Filtering reads for evade tripwire etc
* The file and directory operations for various proc entries are a
goldmine

For Example:
* proc_root_operations
* tcp4_seq_afinfo

B

REMOTE NETWORK MONITORING

 Attacker needs a way to regain access to a system once owned
and trigger certain actions to be taken by the rootkit

* Persistent connections are trivially detectable if the victim can
watch network traffic from a host we don’t own

* Listening is also bad idea as a port scan may hose us

* A combination of these methods makes it very difficult for us to
control the owned system with some assurance that the traffic
won’t be detected

A SOLUTION?

* Making the assumption that the owned machine serves some
purpose, connectivity must already exist (HTTPD, SMTPD, SSHD)
* Why not use legitimate connections to pre-existing services to
create our tunnel?

* Difficult to implement on a case-by-case basis

* Requires modifications to daemon code or some other nasty
hack

OUR OLD ENEMY. THE LOG FILE?

* One thing services have in common are log files (and they contain
client supplied data)

* We can implement a generic pattern based hook below the
write() system call which implements command and control
functionality

» Additionally within write() we can block this write from
completing, keeping our actions out of the logs

* As before, we target dynamic function pointers to avoid detection
through code integrity checking

IN WILD DETECT!

IMPLEMENTING OUR HOOK

write(
[/var/log/messages file descriptor],
"Apr 23 14:41:53 owned sshd[18346]: Accepted keyboard-interactive/pam for from 66.147.239.94 port 31337 ssh2\n",
[Length]

)

write(
[/var/log/httpd/access_log file descriptor],
"66.147.239.94 — - [23/Apr/2010:14:41:53 -0600] \"GET / HTTP/1.1\" 200 3825",
[Length]

)

write(

[/var/log/messages file descriptor],

"Apr 23 14:41:53 owned sshd[18346]: Accepted keyboard-interactive/pam for BEGINMAGIC ENDMAGIC from 66.147.239.94 port
31337 ssh2\n",

[Length]
)

write(
[/var/log/httpd/access_log file descriptor],
"66.147.239.94 — BEGINMAGIC ENDMAGIC - [23/Apr/2010:14:41:53 -0600] \"GET / HTTP/1.1\" 200 3825",
[Length]

)

i T~ wioDeTECTION)

IMPLEMENTING OUR HOOK

- —_— e e]

if (strcmp(filp->f _path.dentry->d_name.name, LOGFILE_NAME) == 0) {
buffer = (char *)kmalloc(len, GFP_KERNEL);
if ('buffer) goto out;
copy_from_user(buffer, buf, len);
if ((p = strstr(buffer, BEGINMAGIC)) == NULL) goto freeout;
// parse command from the buffer
return SUCCESS!;
}
freeout:
kfree(buffer);
out:
return o_filewrite(filp, buf, len, ppos);

 INWILDDETECTION |}

. .I ."-—"-" il R h= "k
e A e e

EXECUTABLE ANALYSIS PROCESS

* Identify malicious executables
 Send off to appsec experts (aka Neohapsis) for analysis
* Unpack if necessary, as a base-case

* Load executable up to OEP

* Dump memory at that point (right before execution)
e Start trying to figure out what exactly it is doing

e Static and Runtime Analysis

* IDA, Olly/ImmunityDBG, Wireshark, etc

* |dentify remote connections and hosts

* |dentify control channels and mechanisms

* Analyze impact that this may have on the compromised server

TYPICAL EXECUTABLE FILE ANALYSIS COUNTERMEASURES

* Anti-debugging
* Runtime tricks to prevent executable from being debugged
* Once known, easy to defeat
* Boring...

* Packers
* Compression-based, simple obfuscation
* Boring...

* Cryptors
* Encryption-based packers
* Interest starts here
* What is the main hurdle here? Key Storage!
* Malware we have seen stores the key someplace in the
executable
* Once process is known, key is easily retrievable

AR

THE DRM PROBLEM

* How can we execute code on e We can’t, otherwise you

a system we do not trust wouldn’t have been able to
without manual interaction? play Assassins Creed 2 for free

* Best DRM systems are those whose content’s benefit comes from
being online, requires authentication to an uncontrolled 3™ party

» Use this same idea within a cryptor, in our implementation a
kernel module cryptor

» Userspace process that uses init_module to load decrypted kernel

module

1.

3.
4.
5.
6.

|

- . - - e— - —

THE DECRYPTION PROCESS

3" party server stores the following information

. Client IP or ID

. Current private key

. Current file location

Userspace cryptor loads, makes a request to server

. Gets private key, file location, and new public key
Decrypt and load module

Shred current encrypted data

Re-encrypts kernel module and wipe memory of plaintext
Store to a new location and send new location to server

MALWARE

——,

EFNCRYPTED FHFIOCATION

* Encrypted file location not stored on server
* Forensic analysis could target files that have a very high entropy

to identify encrypted data

* What else has a high entropy? Compressed files!
* GZIP files have extra headers, can put our encrypted kernel
module in here (http://www.fags.org/rfcs/rfc1952.htm)

EXECUTABLEANALYSISH:

ID1

ID2

cM

FLG

MTIME XFL

(O

* If FLG bit 2 == 1 (FEXTRA), we have extra optional fields to store

data

Si1

SI2

LEN

LEN Bytes of Data...

*\What are some fun GZIP’ed files that no one cares about?
* Manpages!
 Malware can be evil and informative all at the same time!

T, T - = - F = a8 [Ty, T

IMALWARE s [EXECUTABLE ANALYSIS |

WHAT DOFS THIS MFAN FOR EXFCLITARIF ANAIYSIS PROCESS?

* The decryption key is not stored on the file system
* Decryption key cannot be pulled from network logs
* To get this key you have to interact with an attacker controlled server
* This server can implement strict heuristic checks to see if the decryption key
should be nuked
* Source IP address
 Current running processes on the machine
* Time since boot
e ... infinite list
* Any combination of these values
» Static analysis process has just one chance to get this information or forever
loses the ability to decrypt the code

e wireshark; ./evil.exe ... == FAIL
* strings evil.exe; wget http://... == FAIL
e ...==FAIL

* Requires a strong coordination between the owned company, the people who
did disk acquisition, and the people doing the file analysis

I — EXEQUTABLE ANALYSIS .

FIMNISE S T

Q! ;
.__:\‘ i :\
———dlbabeg . stabeiesieiafeiasnn A_-.u‘p ..\

4

L GRS

. —* PR ” 4
PP e T AT AT 7 S s 2 |
= /. r,.ei}'r“ 5 25 /;s_.v.# ==}
. f_f:'f- ﬁf ey i =% =
e /O T e P R et v
:'5"?:-25'{., ,i A -_-.-/ 4 ? ‘z o A\, o X ==\

ONE FINAL FRONT

* The few, the proud, the court approved forensic tools
* Either EnCase or FTK is used in almost every case involving digital

forensics
* When less vetted (less popular) software is used, there is a high risk that

the defense will question the methods used

* Incentive to use popular tools
* Self perpetuating process (the more they are used the more they

will be used in the future)

MALwaRE T [FOR:HSIEWOOESIN

SECURE ++

* So how do these “highly vetted” tools hold up?
* Lets talk O-day

[—— _Fopﬁaﬂsrcv‘r_qm._s[

BUT WHY PICK ON ONE?

* Specialized tools need the same specialized code, so why not buy it from
a (unspecified) third-party?

* Cross-application vulnerabilities are awesome

* Opps... we owned forensics

FORENSIC TOOLS

SO WHAT DOES THIS MEAN?

* Once we control the forensic tool, we control the examiner’s experience
arbitrarily
* We can implement a rootkit that targets the specific tool used

* File hiding

* Incorrect search results

* Planted evidence
* We don’t even have to worry about payload size or delivery as we have
unlimited storage in the drive image
* Typically, forensic examiners’ systems should not have network
connectivity so our payload should be a self contained package

_FORENSIC TOOLS

LT

VEMO TIME

"FORENSIC TOOLS

LT

. FORENSIC TOOLS

QUESTIONSY

(\) NnEOHAPSIS

